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Longuet-Higgins' exact expression for the increase in the Lagrangian-mean elevation 
of the free surface due to the presence of periodic, irrotational surface gravity waves 
is rederived from generalized Lagrangian-mean theory. The raising of the 
Lagrangian-mean surface as wave amplitude builds up illustrates the non-zero 
divergence of the Lagrangian-mean velocity field in an incompressible fluid. 

1. Introduction 
Wave-induced Lagrangian-mean velocities - defined, following Stokes (1847), 

Longuet-Higgins (1953), and others, as rates of change of mean particle positions - 
are generally divergent even in an incompressible fluid. This interesting fact was first 
pointed out to me by D. G. Andrews (McIntyre 1973, p. 810) and was further 
discussed in our joint papers on the generalized Lagrangian-mean theory and related 
matters (Andrews & McIntyre 1976, 1978a, hereinafter AM76, AM78 respectively) 
and in subsequent papers including those by Grimshaw (1979), Uryu (1979), 
McIntyre (1980), Dunkerton et al. (1981), and Nakamura (1981). The phenomenon is 
akin to the well-known divergence, or dispersion, of particle paths in incompressible 
turbulent fluid motion. 

When asymptotic expansions are used to describe the waves and their mean 
effects, the order of approximation a t  which the divergence effect is significant 
depends upon the particular wave problem and upon which variables are considered 
to be of interest. For example the divergence effect is significant at  leading order in 
the problem studied in McIntyre (1973), namely that of calculating correct to 
O(a2)  the mean velocity field and impulse of a dissipationless, two-dimensional, 
horizontally guided internal gravity wave packet of small amplitude a. The problem 
is of theoretical interest as an exception to the usual rule for the mean force on an 
immersed obstacle scattering the waves (e.g. McIntyre & Mobbs 1988). For an 
incompressible fluid, it can be shown quite generally (for rotational as well as 
irrotational waves) that the Lagrangian-mean velocity field UL(x, t) satisfies 

correct to O(a2) (AM78, equation 9.4). Here the summation convention is used, 
&(x, t )  is the i th component of the material particle displacement <(x, t )  about 
position x (ith component xi), defined correct to O(a) ,  and 0 is a suitable Eulerian 
averaging operator. The right-hand side of (1) generally differs from zero, 
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significantly so in the problem just mentioned. Some supporting details are given in 
the Appendix. 

Another example which has been studied in detail, and in which the divergence 
effect is significant a t  leading order, is the problem of calculating the Lagrangian- 
mean flow induced by a growing Eady baroclinic-instability wave (Uryu 1979). If the 
right-hand side of (1) were taken to be zero, a calculation of UL(x, t )  from the 
Lagrangian-mean equations of motion would give a qualitatively incorrect answer. 
Yet another such example is the mean flow induced by equatorially trapped waves 
on a rotating planet. These waves are observed in the Earth’s equatorial lower 
stratosphere, where they are believed on strong evidence to play an important role in 
bringing about the observed reversals, every thirteen months or so, of the east-west 
mean winds that encircle the globe in that region. For details, and references, the 
reader may consult AM76, and AM78, $9. 

The divergence effect can also be significant, for certain purposes, in classical 
problems of irrotational surface gravity waves. The simplest example is the 
generation of irrotational, peribdic, small-amplitude waves from rest by surface 
pressure fluctuations. Equation (1) reduces to 

where z (=  x3), w (=  u3) and 6 ( =  5,) are directed vertically upwards. The Eulerian 
averaging operator 0 can be taken as a horizontal average in x( = xl). The left-hand 
side of ( 2 )  can be written as a 2 2 / a t a z ,  where Z(z, t )  denotes the O(a2) mean vertical 
displacement of a material particle from its undisturbed position z .  Integrating 
forwards in time from an initial state of no disturbance, and upwards from 
undisturbed deep water, or from a flat lower boundary on which am/& = 0, we 
have 

1 a -  
Z(2, t )  = - -(e). 

2 aZ (3) 

We note that pg times the z-integral of this expression over the full depth, where 
p is the density and g the gravity acceleration (both constant), agrees with the usual 
expression for the increase in potential energy per unit area due to the presence of 
surface gravity waves. That expression is ipgp, evaluated a t  the free surface. This 
gives an independent check on the correctness of (I), since one way of evaluating the 
potential energy is evidently in terms of the mass-weighted mean elevation Z(z, t )  of 
all fluid particles relative to their undisturbed positions. For internal gravity waves 
under a rigid upper lid we may multiply (3) by pg = p(z) g and integrate by parts to 
get the z-integral of +g( - ap/az) p. This verifies the standard O(a2) form of the wave- 
induced potential energy for the internal-wave problem.? 

For the case of a progressive, deep-water surface gravity wave 6 = a exp kz cos 
k ( s - c t ) ,  we have = h2 exp2kz. Then (3) shows that the value 2, of 2 at the free 
surface z = 0 is given, correct to O(a2) ,  by 

where denotes the Lagrangian-mean horizontal velocity component evaluated a t  

t A third independent check is given by comparing (1) with (A 2) of McIntyre (1973), and a 
fourth by the calculations described in AM78, equations (9.9) ff; see also Grimshaw (1979), 
equation (4.10) ff. 
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the free surface, in a frame of reference fixed relative to deep water. The second 
expression (4b) follows from the first, (4a ) ,  on setting z = 0 in the well-known O(a2) 
expression U L ( z )  = a2k2c exp2kz (Stokes 1847, equation 23), and using the deep- 
water dispersion relation ce = g l l c .  

In his invited paper to the G. I. Taylor Symposium volume of this journal, 
Longuet-Higgins (1986. hereinafter LH) derives the two expressions (4a, b) by a 
different route, independent of ( l ) ,  and suggests that they may have practical 
implications for certain geophysical measurements involving instrumented buoys on 
the sea surface (see also Srokosz & Longuet-Higgins 1986, who derive an irrotational 
version of (3), and Longuet-Higgins 1987, 1988). LH shows further that, surprisingly, 
the second expression (4b) holds exactly, for waves of finite amplitude. It depends 
only upon assuming periodic waves, irrotational motion, and deep water. In  the 
remainder of this note it is shown how the exact result (4b) can be deduced from the 
generalized Lagrangian-mean (GLM) theory from which (1) was originally derived. 
Section 2 recalls some basic GLM definitions and relations, and then gives a succinct 
derivation of (4b) the essential idea for which was suggested to me by D. G. Andrews 
(personal communication). Section 3 gives an alternative derivation which is less 
direct but which allows one to see the relationship between (4b) and certain exact, 
general theorems that apply to rotational as well as to irrotational waves in 
fluids. 

2. A direct derivation of the exact formula (46) from GLM theory 

Eulerian averaging operator n, is defined by 
The Lagrangian-mean velocity UL, for a general velocity field u(x ,  t )  and a general 

u(x ,  qL = u(x+<(x ,  t ) ,  t ) .  ( 5 )  

Here <(x, t )  is the displacement about mean position x, i.e. defined such that 

<(x, t )  = 0. 

These definitions are exact ; a careful discussion of their basis, for arbitrary space, 
- time or ensemble averaging operators n, is given in AM78. In  the present problem 
( ) can be taken, as before, to be a spatial average with respect to horizontal distance 
x. The GLM definitions are fully consistent with, but also represent a significant 
generalization of, the classical definitions of Stokes (1847, equations (22) ff.) and 
Longuet-Higgins (1953, equation (21)) ; see the' Appendix below and, for further 
discussion, $31, 2.1 of McIntyre (1980). For instance the GLM formalism overcomes 
the problem, noted by Longuet-Higgins (1953, p. 541), of defining UL to higher 
accuracy than O(a2).  

The generalized Lagrangian mean of an arbitrary field @(x, t )  is defined in the same 
way as in ( 5 ) ;  that is, one replaces x b x+<(x, t )  and then applies the Eulerian 
averaging operator n. The operator ( ) , thus defined, is useful because it gives a 
simple result when applied to the material derivative, namely 

4 

(AM78, equation (2.15)). 
In order to derive (4b) it  is convenient to go into a frame of reference following the 
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waves, as in LH, so that the flow is steady. The Lagrangian-mean velocity UL now 
approaches ( - c ,  0 )  as z+- CO. Its horizontal component 

(8) 
-L u ( z )  = z:(z)--c, 

where Go" again refers to the frame of reference in which the fluid a t  depth is 
motionless, but is now defined for general z.  

Equation (4b)  is the result of applying the operator 0" to the steady-state 
Bernoulli equation. With a suitable choice of origin for z ,  to be specified in a moment, 
the Bernoulli equation can be taken as 

Since a t  great depth the pressure is horizontally uniform and steady (in contrast with 
problems involving standing waves), and depends hydrostatically on the mass of the 
overlying layer whether or not the waves are present (Lamb 1932, p. 420), (9) is 
the appropriat>e form when the z-origin is taken in the undisturbed free surface. 
Introducing the velocity potential 

$(x, t )  = - - x + $ o ( x ,  t ) ,  

(u(2 = u.V$ = -cu+u.Vq5,, 
say, we note that 

and that $, is periodic in x so that its Lagrangian mean exists and is x-independent. 
Now since a/at = 0,  (11)  and (7 )  give immediately 

--L -L --L 

The last step ex loits the fact that WL is exactly zero in the steady state, as well as 
the fact that a$,, /ax = 0. The vanishing of EL for steady, irrotational, periodic water 
waves is evident from the definition ( 5 )  and the spatial symmetry of the velocity and 
displacement fields in such waves. Figure 1 depicts the displacements of material 
particles lying on a material contour whose undisturbed position is horizontal ; note 
the symmetry of the displacement field about each wavecrest, g being an even 
function and 6 an odd function of x. 

Applying the operator n" to (9), using (12), and noting that (6) implies that gz 
equals its Lagrangian mean, we get 

- 

(12) IuyL = --cu + u  .V$, = -cuL. 

-2 

(13) 
-&CuL+-+gz P" = g.". 

P 

Rearranging this result and using (8), we see that 

Since z is by definition the exact Lagrangian-mean position, relative to the 
undisturbed free surface, of the associated material contour (again see (6) and figure 
l),  the relation (14) gives the exact Lagrangian-mean depth of the material contour 
for which the Lagrangian-mean pressure is j?'. In  particular, continuing analytically 
to the free surface (where p and therefore FL vanish after wave generation), we see 
that (14) reduces exactly to Longuet-Higgins' result (4b). 
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FIGURE 1.  Sketch of an initially horizontal material contour and the associated displacement field 
{(x, t )  in a deep-water wave, for one value of z and a number of equally spaced values of x. The 
horizontal line marks the given value of z. By (6), the latter gives the mean depth of the set of 
material particles located at the tips of the displacement arrows (i.e. a t  positions x+{). Note that, 
because the average is evenly weighted over 5 rather than x + c ,  the horizontal line lies higher than 
a line cutting off equal areas. 

3. An alternative GLM derivation 
For an inviscid, incompressible, homogeneous fluid of constant density p in an 

inertial frame of reference, equation (3.13) (Theorem 11) of AM78 reduces to the exact 
relation 

where e is the pseudoenergy, or quasi-energy, associated with the wave motion, and 
9 the corresponding pseudomomentum or quasi-momentum. t These are defined (in 
the inertial frame) as 

e = ( z ) e u [ ,  

9 = -(V<).uC, 

the contraction in the last expression being with respect to the components of 5 and 
not V. Here u( denotes the Lagrangian disturbance velocity field, defined as 
u(x+<(x ,  t ) ,  t ) -UL(x ,  t ) .  For irrotational motion we have, in addition, the exact 
relation 

(AM78 theorem I, corollary IV).  The reader interested in verifying these results is 
referred to AM78. (Theorems I and I1 are respect,ively the spatial, and minus the 
temporal, components of it set of four equations obtained by contracting the 4-tensor 
V,,,(E, t )  with the equations of motion evaluated a t  position %(x, t )  = x+<(x, t )  and 
time t, and then applying the Eulerian averaging operator n. Here V(*) is the four- 
dimensional gradient operator (alax,, a/ax2, a/ax,, a/at) ,  ‘equations of motion ’ 

v x (UL-q )  = 0 (18) 

t The prefix ‘quasi-’. of whose currency Andrews and I were unaware in 1978, seems 
etymologically the more apt. In GLM theory the quasi-energy and quasi-momentum are the 
conservable, O(a2) wave properties associated respectively with temporal and spatial invariance of 
the Lagrangian-mean flow. Many types of waves behave, for many purposes, as if they had energy 
e and momentum Q (Andrews & McIntyre 1978a, b ;  McIntyre & Mobbs 1988), the internal-wave 
problem studied in McIntyre (1973) being an exception to this rule. By O(a2) wave properties is 
meant quantities evaluable correct to O(a2) from linear theory, to @a3) from second-order theory, 
and so on to higher orders in a. Analogous O(u2) wave properties may also be defined, albeit in a 
somewhat less general way, in terms of Eulerian variables (McIntyre & Shepherd 1987, $7, and 
references therein), following Hamiltonian concepts developed by Poisson, Lie, Dirac, Arnol’d and 
others. We note that AM78’s Theorem I1 has been further discussed by Dunkerton (1983), who also 
illustrates the kinematics involved in defining (1” when is a time average. 
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means the momentum equations together with the negative7 of the energy equation, 
per unit mass, and the contraction is taken with respect to the components of (8, t ) ,  
not V(*), as in (16), (17) above.) 

Now we are a t  liberty to imagine that the waves are generated from rest, in any 
way we please. In particular, we may imagine that they are generated as slowly as 
we please, by an arbitrarily weak, stationary, periodic pressure pattern applied at the 
surface. Let the magnitude of the imposed pressure be characterized by the small 
parameter ,u, and let the pressure be applied for a time of order p-l. Then slat, e, and 
the vertical components of UL and 9 are all O(,u) during wave generation and all 
exactly zero in the final steady state. The vanishing of the vertical component of 9, 
for steady, irrotational, periodic waves, is evident from the spatial symmetry 
properties of the velocity and displacement fields in such waves already referred to 
below equation (12). 

The Bernoulli function $ 1 ~ 1 ~  + (p /p)  +gz is now equal to 

&Z--  = $cC"+O(,u), 
at 

in the circumstances assumed. It follows that the left-hand side of (15) is O(pz).  The 
i?GL/at contribution to the first term on the right of (15) is O(,u3). Therefore 

- (UL-q)+-  -$W +-+gz = 0(/2), auL 
at a (  L F L  P 1 at 

where q is the horizontal component of q. But (18) implies that ( U L - q )  is 
independent of depth z, and so must be equal to its value at z = - 00, which value 
is - c .  Therefore the left-hand side of (19) can be integrated over the time interval 
of order ,u-l during which the waves are generated to give 

L p" 
-iiLc-$W +-+gz = func(z)+O(p). (20) 

P 
Now in the initial, undisturbed, hydrostatic state, the left-hand side of (20) is equal 

to a constant. The O(p) contribution on the right can be made as small as we please, 
relative to the left-hand side, by generating the waves arbitrarily slowly. If, 
therefore, the origin is now taken as before in the undisturbed free surface, the 
function of x on the right takes the constant value $2, and it follows that 

L p" 
--u c-#2 +-+gz = $2 (21) 
-L - 

P 
in the final steady, periodic wave motion. Adding half of (21) to half the Lagrangian 
mean of (9) immediately recovers (13), and hence (14) and (4b). 

I am grateful to D. G. Andrews and two anonymous referees for constructive 
comments on the first draft of this note, which led to a number of improvements. In 
particular, Andrews spotted the elegant gambit of rewriting IuI2 in the manner shown 
in ( l l ) ,  which led to the very succinct derivation of (4b) given in the second half of 
§2. 

t The minus signs appear because it is the energy-momentum one-form that is involved in the 
contraction, not the energy-momentum vector. 
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Appendix. Equation (1) when lULl = O(a2) 

We rederive (1) in the circumstances envisaged in $ 1,  in which classical definitions 
of the displacement and Lagrangian-mean velocity fields apply. It is shown in 
particular that there is no conflict with Longuet-Higgins' elegant proof (1953, 
equation (35)) that V - u = 0 correct to O(a2) ; and it is shown why the right-hand side 
of (1) is significant at leading order in the internal-gravity-wave problem referred to 
in $1.  

-L 

Note, first, that Longuet-Higgins' proof assumes inter alia 
(i) that the wave-amplitude field is steady ; and 

(ii) that to O(a) the motion is one of small oscillations about rest, so (UL( = O(a2) .  
The right-handside of (1) is then, indeed, negligible to O(a2) .  Second, if we follow 
Longuet-Higgins' basic assumptions and definitions, including the assumption (ii) just 
stated, we have a</at = u and V.5  = 0 correct to O(a).  Furthermore UL-u = (<-Vu) 
correct to O(a2),  as in the original problem considered by Stokes (1847),? so that 
V-EL = V.(g.Vu) correct to O(a2) since V.u = V-U = 0. Now all these relations still 
hold if we relax the steadiness assumption (i) and regard 0 as a running time 
average. This can be justified in the usual way, using the concept of two-timing or 
slow modulation that underlies the standard notions of wave packet, group velocity, 
and so on. It then follows that, correct to O(a2),  

- 

where suffixes preceded by commas denote the corresponding spatial derivatives, 
( ) , i  = a( )/ax,. This directly verifies (1) under the assumption of slow modulations 
and the foregoing assumption (ii). 

The two assumptions just stated hold true in the internal gravity waveguide 
problem referred to in $ 1 .  In that problem, a calculation of %(x, t )  from the 
Lagrangian-mean equations of motion would be in error a t  leading order if the right- 
hand side of (A 1 )  were to be inadvertently ignored. The problem is two-dimensional, 
and, correct to leading order for slow modulations, (A 1) reduces to 

auL awL 1 a 3  - 
(!3* ax ax 2 ataz2 

-+-=-- 

The right-hand side of ( A 2 )  is evidently non-zero with order of magnitude pa2, 
where p is the slow-modulation parameter, assumed small, that characterizes the 
temporal and horizontal spatial variability of averaged quantities. Because the wave 
packet has a lengthscale of order p-l, ignoring the right-hand side can be expected 
to produce an error of order pa2 in aUL/i3x and hence a2 in ii'. That is, U L  would be 
wrong to leading order. Detailed calculations like those presented in McIntyre (1973) 
confirm that expectation. 

-( This, also, depends on assumption (ii); if U and EL were O(1)  there would be a further O(u2)  
contribution g.  (e .V) VU to the Stokes drift defined as EL -U. 
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